$$
\begin{array}{r}
\text { Mark Scheme } 4755 \\
\text { June } 2005
\end{array}
$$

Section A			
$\mathbf{1 (i)}$ 1(ii)	$\begin{aligned} & \mathbf{A}^{-1}=\frac{1}{5}\left(\begin{array}{cc} 2 & -3 \\ -1 & 4 \end{array}\right) \\ & \frac{1}{5}\left(\begin{array}{cc} 2 & -3 \\ -1 & 4 \end{array}\right)\binom{5}{-4}=\binom{x}{y}=\frac{1}{5}\binom{22}{-21} \\ & \Rightarrow x=\frac{22}{5}, y=\frac{-21}{5} \end{aligned}$	M1 A1 M1 A1(ft) A1 (ft) [5]	Dividing by determinant Pre-multiplying by their inverse Follow through use of their inverse No marks for solving without using inverse matrix
2	$4-j, 4+j$ $\begin{aligned} & \sqrt{17}(\cos 0.245+\mathrm{j} \sin 0.245) \\ & \sqrt{17}(\cos 0.245-\mathrm{j} \sin 0.245) \end{aligned}$	M1 A1 [2] M1 F1, F1 [3]	Use of quadratic formula Both roots correct Attempt to find modulus and argument One mark for each root Accept (r, θ) form Allow any correct arguments in radians or degrees, including negatives: 6.04, $14.0^{\circ}, 346^{\circ}$. Accuracy at least 2s.f. S.C. F1 for consistent use of their incorrect modulus or argument (not both, F0)
3	$\begin{aligned} & \left(\begin{array}{cc} 3 & -1 \\ 2 & 0 \end{array}\right)\binom{x}{y}=\binom{x}{y} \Rightarrow x=3 x-y, y=2 x \\ & \Rightarrow y=2 x \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	M1 for $\left(\begin{array}{cc}3 & -1 \\ 2 & 0\end{array}\right)\binom{x}{y}=\binom{x}{y}$ (allow if implied) $\left(\begin{array}{cc}3 & -1 \\ 2 & 0\end{array}\right)\binom{k}{m k}=\binom{K}{m K}$ can lead to full marks if correctly used. Lose second A 1 if answer includes two lines
$\begin{aligned} & \text { 4(i) } \\ & \text { 4(ii) } \\ & \text { 4(iii) } \end{aligned}$	$\begin{aligned} & \alpha+\beta=2, \alpha \beta=4 \\ & \alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=4-8=-4 \end{aligned}$ Sum of roots $=2 \alpha+2 \beta=2(\alpha+\beta)=4$	B1 M1A1 (ft) M1	Both Accept method involving calculation of roots Or substitution method, or method

	Product of roots $=2 \alpha \times 2 \beta=4 \alpha \beta=16$ $x^{2}-4 x+16=0$	A1(ft) [5]	involving calculation of roots The $=0$, or equivalent, is necessary for final A1

5(i)	Sketch of Argand diagram with:		
	Point $3+4 \mathrm{j}$. Circle, radius 2.	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \text { [2] } \end{aligned}$	Circle must not touch either axis. B1 max if no labelling or scales. Award even if centre incorrect.
5(ii)	Half-line: Starting from $(4,0)$ Vertically upwards	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \text { [2] } \end{aligned}$	
5(iii)	Points where line crosses circle clearly indicated.	$\begin{aligned} & \mathrm{B} 1 \\ & {[1]} \end{aligned}$	Identifying 2 points where their line cuts the circle

Qu	Answer	Mark	Comment
Section A (continued)			
6	For $k=1,1^{3}=1$ and $\frac{1}{4} 1^{2}(1+1)^{2}=1$, so true for $k=1$ Assume true for $n=k$ Next term is $(k+1)^{3}$ Add to both sides $\begin{aligned} & \text { RHS }=\frac{1}{4} k^{2}(k+1)^{2}+(k+1)^{3} \\ & =\frac{1}{4}(k+1)^{2}\left[k^{2}+4(k+1)\right] \\ & =\frac{1}{4}(k+1)^{2}(k+2)^{2} \\ & =\frac{1}{4}(k+1)^{2}((k+1)+1)^{2} \end{aligned}$ But this is the given result with $(k+1)$ replacing k. Therefore if it is true for k it is true for $(k+1)$. Since it is true for $k=1$ it is true for $k=1,2,3, \ldots$.	B1 B1 B1 M1 M1 A1 E1 [7]	Assuming true for $k,(k+1)^{\text {th }}$ term for alternative statement, give this mark if whole argument logically correct Add to both sides Factor of $(k+1)^{2}$ Allow alternative correct methods For fully convincing algebra leading to true for $k \Rightarrow$ true for k $+1$ Accept ‘Therefore true by induction' only if previous A1 awarded S.C. Give E1 if convincing explanation of induction following acknowledgement of earlier error
7	$\begin{aligned} & 3 \sum r^{2}-3 \sum r \\ & =3 \times \frac{1}{6} n(n+1)(2 n+1)-3 \times \frac{1}{2} n(n+1) \\ & =\frac{1}{2} n(n+1)[(2 n+1)-3] \\ & =\frac{1}{2} n(n+1)(2 n-2) \\ & =n(n+1)(n-1) \end{aligned}$	$\begin{aligned} & \text { M1,A } \\ & 1 \\ & \text { M1,A } \\ & 1 \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { c.a.o. } \\ & {[6]} \\ & \hline \end{aligned}$	Separate sums Use of formulae Attempt to factorise, only if earlier M marks awarded Must be fully factorised

8(i)	$x=\frac{2}{3}$ and $y=\frac{1}{9}$	$\begin{aligned} & \text { B1, } \\ & \text { B1 } \end{aligned}$	-1 if any others given. Accept min of 2s.f. accuracy
8(ii)	Large positive $x, y \rightarrow \frac{1}{9}^{+}$ (e.g. consider $x=100$) Large negative $x, y \rightarrow \frac{1^{+}}{9}$ (e.g. consider $x=-100$)	[2] M1	Approaches horizontal asymptote, not inconsistent with their (i) Correct approaches
8(iii)		A1	Reasonable attempt to justify
	Curve $x=\frac{2}{3} \text { shown with correct approaches }$	$\begin{aligned} & \text { E1 } \\ & \text { [3] } \end{aligned}$	approaches
	$y=\frac{1}{9}$ shown with correct approaches (from below on left, above on right). $(2,0),(-2,0)$ and $(0,-1)$ shown	$\begin{aligned} & \mathrm{B} 1(\mathrm{ft}) \\ & \mathrm{B} 1(\mathrm{ft}) \\ & \mathrm{B} 1 \mathrm{ft}) \end{aligned}$	1 for each branch, consistent with horizontal asymptote in (i) or (ii)
	$y_{\uparrow}: x=\frac{2}{3}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { [5] } \end{aligned}$	Both x intercepts y intercept (give these marks if coordinates shown in workings, even if not shown on graph)
8(iv)	$\begin{aligned} & -1=\frac{x^{2}-4}{(3 x-2)^{2}} \Rightarrow-9 x^{2}+12 x-4=x^{2}-4 \\ & \Rightarrow 10 x^{2}-12 x=0 \\ & \Rightarrow 2 x(5 x-6)=0 \\ & \Rightarrow x=0 \text { or } x=\frac{6}{5} \end{aligned}$ From sketch,		
		M1	Reasonable attempt at solving inequality
	$\begin{aligned} & y \geq-1 \text { for } x \leq 0 \\ & \text { and } x \geq \frac{6}{5} \end{aligned}$	A1	Both values - give for seeing 0 and $\frac{6}{5}$, even if inequalities are wrong
		B1	
		F1	For $x \leq 0$
		[4]	Lose only one mark if any strict inequalities given

9(i)	$\begin{aligned} & 2-j \\ & 2 j \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { [2] } \end{aligned}$	
9(iii)	$\begin{aligned} & (x-2-\mathrm{j})(x-2+\mathrm{j})(x+2 \mathrm{j})(x-2 \mathrm{j}) \\ & =\left(x^{2}-4 x+5\right)\left(x^{2}+4\right) \\ & =x^{4}-4 x^{3}+9 x^{2}-16 x+20 \end{aligned}$ So $A=-4, B=9, C=-16$ and $D=20$	$\begin{gathered} \text { M1, } \\ \text { M1 } \\ \text { A1,A1 } \\ \text { A4 } \\ {[8]} \end{gathered}$	M1 for each attempted factor pair A1 for each quadratic - follow through sign errors Minus 1 each error - follow through sign errors only
OR	$\begin{aligned} & -\mathrm{A}=\sum \alpha=4 \Rightarrow \mathrm{~A}=-4 \\ & \mathrm{~B}=\sum \alpha \beta=9 \Rightarrow \mathrm{~B}=9 \\ & -\mathrm{C}=\sum \alpha \beta \gamma=16 \Rightarrow \mathrm{C}=-16 \\ & \mathrm{D}=\sum \alpha \beta \gamma \delta=20 \Rightarrow \mathrm{D}=20 \end{aligned}$	$\begin{gathered} \text { M1, } \\ \text { A1 } \\ \text { M1, } \\ \text { A1 } \\ \text { M1, } \\ \text { A1 } \\ \text { M1, } \\ \text { A1 } \\ {[8]} \\ \hline \end{gathered}$	M1s for reasonable attempt to find sums S.C. If one sign incorrect, give total of A3 for A, B, C, D values If more than one sign incorrect, give total of A2 for $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ values
OR	Attempt to substitute two correct roots into $x^{4}+A x^{3}+B x^{2}+C x+D=0$ Produce 2 correct equations in two unknowns $A=-4, B=9, C=-16, D=20$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A2 } \\ & \text { A4 } \end{aligned}$	One for each root One for each equation One mark for each correct. S.C. If one sign incorrect, give total of A3 for A, B, C, D values If more than one sign incorrect, give total of A2 for A, B, C, D values

